Syllabus Biomedical Engineering

Year 1 & Year 2

Kings Cornerstone International College

© Copyrighted. For viewing purposes only

Unit 1:	Engineering Design
Unit code	K/615/1475
Unit type	Core
Unit level	4
Credit value	15

Introduction

The tremendous possibilities of the techniques and processes developed by engineers can only be realised by great design. Design turns an idea into a useful artefact, the problem into a solution, or something ugly and inefficient into an elegant, desirable and cost effective everyday object. Without a sound understanding of the design process the engineer works in isolation without the links between theory and the needs of the end user.

The aim of this unit is to introduce students to the methodical steps that engineers use in creating functional products and processes; from a design brief to the work, and the stages involved in identifying and justifying a solution to a given engineering need.

Among the topics included in this unit are: Gantt charts and critical path analysis, stakeholder requirements, market analysis, design process management, modelling and prototyping, manufacturability, reliability life cycle, safety and risk, management, calculations, drawings and concepts and ergonomics.

On successful completion of this unit students will be able to prepare an engineering design specification that satisfies stakeholders' requirements, implement best practice when analysing and evaluating possible design solutions, prepare a written technical design report, and present their finalised design to a customer or audience.

Learning Outcomes

By the end of this unit students will be able to:

- Plan a design solution and prepare an engineering design specification in 1. response to a stakeholder's design brief and requirements.
- 2. Formulate possible technical solutions to address the student-prepared design specification.
- 3. Prepare an industry-standard engineering technical design report.
- port and e 4. Present to an audience a design solution based on the design report and evaluate

© Copyrighted. For viewing purposes only

Essential Content

LO1 Plan a design solution and prepare an engineering design specification in response to a stakeholder's design brief and requirements

Planning techniques used to prepare a design specification:

Definition of client's/users objectives, needs and constraints

Definition of design constraints, function, specification, milestones

Planning the design task: Flow charts, Gantt charts, network and critical path analysis necessary in the design process

Use of relevant technical/engineering/industry standards within the design process

Design process:

Process development, steps to consider from start to finish

The cycle from design to manufacture

Three- and five-stage design process

Vocabulary used in engineering design

Stage of the design process which includes:

Analysing the situation, problem statement, define tasks and outputs, create the design concept, research the problem and write a specification

Suggest possible solutions, select a preferred solution, prepare working drawings, construct a prototype, test and evaluate the design against objectives, design communication (write a report)

Customer/stakeholder requirements:

Converting customer request to a list of objectives and constraints

Interpretation of design requirements

Market analysis of existing products and competitors

Aspects of innovation and performance management in decision-making

LO2 Formulate possible technical solutions to address the student-prepared design specification

Conceptual design and evaluating possible solutions:

Modelling, prototyping and simulation using industry standard software, (e.g. AutoCAD, Catia, SolidWorks, Creo) on high specification computers

Use of evaluation and analytical tools, e.g. cause and effect diagrams, CAD, knowledge-based engineering

LO3 Prepare an industry-standard engineering technical design report

Managing the design process:

Recognising limitations including cost, physical processes, availability of material/components and skills, timing and scheduling

Working to specifications and standards, including:

The role of compliance checking, feasibility assessment and commercial viability of product design through testing and validation

Design for testing, including:

Material selection to suit selected processes and technologies

Consideration of manufacturability, reliability, life cycle and environmental issues

The importance of safety, risk management and ergonomics

Conceptual design and effective tools:

Technologies and manufacturing processes used in order to transfer engineering designs into finished products

LO4 Present to an audience a design solution based on the design report and evaluate the solution/presentation

Communication and post-presentation review:

Selection of presentation tools

Analysis of presentation feedback

Strategies for improvement based on feedback

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Plan a design solution design specification in rest brief and requirements	n and prepare an engineering ponse to a stakeholder's design	D1 Compare and contrast the completed design specification
P1 Produce a design specification from a given design brief	M1 Evaluate potential planning techniques, presenting a case for the	against the relevant industry standard specification
P2 Explain the influence of the stakeholder's design brief and requirements in the preparation of the design specification	method chosen M2 Demonstrate critical path analysis techniques in design project scheduling/planning and explain its use	ne.edi
P3 Produce a design project schedule with a graphical illustration of the planned activities		st st Ot
LO2 Formulate possible te the student-prepared design	echnical solutions to address gn specification	D2 Evaluate potential technical solutions,
P4 Explore industry standard evaluation and analytical tools in formulating possible technical solutions	M3 Apply the principles of modelling, simulation and/or prototyping, using appropriate software, to develop an appropriate design solution	presenting a case for the final choice of solution
P5 Use appropriate design techniques to produce a possible	egy	

Pass	Merit	Distinction
LO3 Prepare an industry-s design report	standard engineering technical	D3 Evaluate the effectiveness of the
 P6 Prepare an industry- standard engineering technical design report P7 Explain the role of design specifications and standards in the technical design report 	M4 Assess any compliance, safety and risk management issues specific to the technical design report	industry standard engineering technical design report for producing a fully compliant finished product
LO4 Present to an audien the design report and eva	ce a design solution based on Iluate the solution/presentation	D4 Justify potential improvements to the
P8 Present the recommended design solution to the identified audience	M5 Reflect on the effectiveness of the chosen communication strategy in presenting the design solution	design solution and/or presentation based on reflection and/or feedback
P9 Explain possible communication strategies and presentation methods that could be used to inform the stakeholders of the recommended solution	off corne	
ownload	edfre	

Recommended Resources

Textbooks

DUL, J. and WEERDMEESTER, B. (2008) Ergonomics for beginners. 3rd Ed. Boca Raton: CRC Press.

DYM, C.L., LITTLE, P. and ORWIN, E. (2014) Engineering Design: a Project Based Introduction. 4th Ed. Wiley.

BS Publications.	
Websites	
www.epsrc.ac.uk	Engineering and Physical Sciences Research Council (General Reference)
www.imecne.org	(General Reference)
2000	

Unit 2:Engineering MathsUnit codeM/615/1476Unit typeCoreUnit level4Credit value15

Introduction

The mathematics that is delivered in this unit is that which is directly applicable to the engineering industry, and it will help to increase students' knowledge of the broad underlying principles within this discipline.

The aim of this unit is to develop students' skills in the mathematical principles and theories that underpin the engineering curriculum. Students will be introduced to mathematical methods and statistical techniques in order to analyse and solve problems within an engineering context.

On successful completion of this unit students will be able to employ mathematical methods within a variety of contextualised examples, interpret data using statistical techniques, and use analytical and computational methods to evaluate and solve engineering problems.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Identify the relevance of mathematical methods to a variety of conceptualised engineering examples.
- 2. Investigate applications of statistical techniques to interpret, organise and present data.
- 3. Use analytical and computational methods for solving problems by relating sinusoidal wave and vector functions to their respective engineering applications.
- 4. Examine how differential and integral calculus can be used to solve engineering problems.

Essential Content

LO1 Identify the relevance of mathematical methods to a variety of conceptualised engineering examples

Mathematical concepts:

Dimensional analysis

Arithmetic and geometric progressions

Functions:

Exponential, logarithmic, trigonometric and hyperbolic functions

LO2 Investigate applications of statistical techniques to interpret, organise and present data

20

Summary of data:

Mean and standard deviation of grouped data

Pearson's correlation coefficient

Linear regression

Charts, graphs and tables to present data

Probability theory:

Binomial and normal distribution

LO3 Use analytical and computational methods for solving problems by relating sinusoidal wave and vector functions to their respective engineering application.

Sinusoidal waves:

Sine waves and their applications

Trigonometric and hyperbolic identities

Vector functions:

Vector notation and properties

Representing quantities in vector form

Vectors in three dimensions

LO4 Examine how differential and integral calculus can be used to solve engineering problems

Differential calculus:

Definitions and concepts

Definition of a function and of a derivative, graphical representation of a function, notation of derivatives, limits and continuity, derivatives; rates of e.eduit change, increasing and decreasing functions and turning points

Differentiation of functions

Differentiation of functions including:

- standard functions/results
- using the chain, product and quotient rules
- second order and higher derivatives

Types of function: polynomial, logarithmic, exponential and trigonometric (sine, cosine and tangent), inverse trigonometric and hyperbolic functions

Integral calculus:

Definite and indefinite integration

Integrating to determine area

Integration of functions including:

- common/standard functions
- using substitution
- by parts

Exponential growth and decay

Types of function: algebraic including partial fractions and trigonometric (sine, cosine and tangent) functions

Engineering problems involving calculus:

Including: stress and strain, torsion, motion, dynamic systems, oscillating systems, force systems, heat energy and thermodynamic systems, fluid flow, AC theory, electrical signals, information systems, transmission systems, electrical machines, electronics

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Identify the relevance of mathematical methods to a variety of conceptualised engineering examples		LO1 & LO2 D1 Present data in a
P1 Apply dimensional analysis techniques to solve complex problems	M1 Use dimensional analysis to derive equations	method that can be understood by a non- technical audience
P2 Generate answers from contextualised arithmetic and geometric progressions		
P3 Determine solutions of equations using exponential, logarithmic, trigonometric and hyperbolic functions		ne.eu
LO2 Investigate applications of s interpret, organise and present d	tatistical techniques to ata	S
P4 Summarise data by calculating mean and standard deviation	M2 Interpret the results of a statistical hypothesis test conducted from a	
P5 Calculate probabilities within both binomially distributed and normally distributed random variables	given scenario	
ownloaded		

	Mern	Distinction
LO3 Use analytical and compute problems by relating sinusoidal to their respective engineering a	tional methods for solving wave and vector functions oplication	D2 Model the combination of sine waves graphically and
 P6 Solve engineering problems relating to sinusoidal functions P7 Represent engineering quantities in vector form, and use appropriate methodology to determine engineering parameters 	M3 Use compound angle identities to combine individual sine waves into a single wave	analyse the variation in results between graphical and analytical methods
LO4 Examine how differential ar used to solve engineering problem	nd integral calculus can be ms	D3 Analyse maxima and minima of
P8 Determine rates of change for algebraic, logarithmic and trigonometric functions	M4 Formulate predictions of exponential growth and decay models using	increasing and decreasing functions using higher order derivatives
P9 Use integral calculus to solve practical problems relating to engineering	integration methods	denvatives
	C_{O}	
MALOAded	tron	

Recommended Resources

Textbooks

SINGH, K. (2011) Engineering Mathematics Through Applications. 2nd Ed. Basingstoke: Palgrave Macmillan.

.ver STROUD, K.A. and BOOTH, D.J. (2013) *Engineering Mathematics*. 7th Ed. Basingstoke:

Unit 3:Engineering ScienceUnit codeT/615/1477

Unit type	Core	
Unit level	4	
Credit value	15	2

Introduction

Engineering is a discipline that uses scientific theory to design, develop or maintain structures, machines, systems, and processes. Engineers are therefore required to have a broad knowledge of the science that is applicable to the industry around them.

This unit introduces students to the fundamental laws and applications of the physical sciences within engineering and how to apply this knowledge to find solutions to a variety of engineering problems.

Among the topics included in this unit are: international system of units, interpreting data, static and dynamic forces, fluid mechanics and thermodynamics, material properties and failure, and A.C./D.C. circuit theories.

On successful completion of this unit students will be able to interpret and present qualitative and quantitative data using computer software, calculate unknown parameters within mechanical systems, explain a variety of material properties and use electromagnetic theory in an applied context.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Examine scientific data using both quantitative and qualitative methods.
- 2. Determine parameters within mechanical engineering systems.
- 3. Explore the characteristics and properties of engineering materials.
- 4. Analyse applications of A.C./D.C. circuit theorems, electromagnetic principles and properties.

Essential Content

LO1 Examine scientific data using both quantitative and qualitative methods

International system of units:

The basic dimensions in the physical world and the corresponding SI base units

SI derived units with special names and symbols

SI prefixes and their representation with engineering notation

Interpreting data:

Investigation using the scientific method to gather appropriate data

Test procedures for physical (destructive and non-destructive) tests and statistical tests that might be used in gathering information

Summarising quantitative and qualitative data with appropriate graphical representations

Using presentation software to present data to an audience

LO2 Determine parameters within mechanical engineering systems

Static and dynamic forces:

Representing loaded components with space and free body diagrams

Calculating support reactions of beams subjected to concentrated and distributed loads

Newton's laws of motion, D'Alembert's principle and the principle of conservation of energy

Fluid mechanics and thermodynamics:

Archimedes' principle and hydrostatics

Continuity of volume and mass flow for an incompressible fluid

Effects of sensible/latent heat of fluid

Heat transfer due to temperature change and the thermodynamic process equations

LO3 Explore the characteristics and properties of engineering materials

Material properties:

Atomic structure of materials and the structure of metals, polymers and composites

Mechanical and electromagnetic properties of materials

Material failure:

Destructive and non-destructive testing of materials

The effects of gradual and impact loading on a material.

Degradation of materials and hysteresis

LO4 Analyse applications of A.C./D.C. circuit theorems, electromagnetic principles and properties

D.C. circuit theory:

Voltage, current and resistance in D.C. networks

Exploring circuit theorems (Thevenin, Norton, Superposition), Ohm's law and Kirchhoff's voltage and current laws

A.C. circuit theory:

Waveform characteristics in a single-phase A.C. circuit

RLC circuits

Magnetism:

Characteristics of magnetic fields and electromagnetic force The principles and applications of electromagnetic induction

Learning Outcomes and Assessment Criteria

	Merit	Distinction	
LO1 Examine scientific data and qualitative methods	using both quantitative	D1 Analyse scientific data using both	
P1 Describe SI units and prefix notation	M1 Explain how the application of scientific	quantitative and qualitative methods	
P2 Examine quantitative and qualitative data with appropriate graphical representations	method impacts upon different test procedures		
LO2 Determine parameters engineering systems	within mechanical	D2 Compare how changes in the thermal	
P3 Determine the support reactions of a beam carrying a combination of a concentrated load and a uniformly distributed load	M2 Determine unknown forces by applying d'Alembert's principle to a free body diagram	efficiency of a given system can affect its performance.	
P4 Use Archimedes' principle in contextual engineering applications	or		
P5 Determine the effects of heat transfer on the dimensions of given materials	croin		

Merit	Distinction	
LO3 Explore the characteristics and properties of engineering materials		
M3 Review elastic and electromagnetic hysteresis in different materials	material properties of metals and non-metals with practical test data	
	X	
LO4 Analyse applications of A.C./D.C. circuit theorems, electromagnetic principles and properties		
M4 Explain the principles and applications of electromagnetic	problems on a combined series-parallel RLC circuit using A.C. theory.	
induction	ers	
on		
	Merit tics and properties of M3 Review elastic and electromagnetic hysteresis in different materials A.C./D.C. circuit theorems, nd properties M4 Explain the principles and applications of electromagnetic induction	

Recommended Resources

Textbooks

BIRD, J. (2012) Science for Engineering. 4th Ed. London: Routledge.

BOLTON, W. (2006) Engineering Science. 5th Ed. London: Routledge.

TOOLEY, M. and DINGLE, L. (2012) Engineering Science: For Foundation *Degree and Higher National*. London: Routledge.

Journals

eduit International Journal of Engineering Science. International Journal of Engineering Science and Innovative Technology.

Websites

https://www.khanacademy.org/

Khan Academy Physics (Tutorials) , ila contrological de la contrological de la

Unit 4: Ma

Managing a Professional Engineering Project

Unit code	A/615/1478	
Unit type	Core	
Unit level	4	
Credit value	15	1 U.I.

Introduction

The responsibilities of the engineer go far beyond completing the task in hand. Reflecting on their role in a wider ethical, environmental and sustainability context starts the process of becoming a professional engineer – a vial requirement for career progression.

Engineers seldom work in isolation and most tasks they undertake require a range of expertise, designing, developing, manufacturing, constructing, operating and maintaining the physical infrastructure and content of our world. The bringing together of these skills, expertise and experience is often managed through the creation of a project.

This unit introduces students to the techniques and best practices required to successfully create and manage an engineering project designed to identify a solution to an engineering need. While carrying out this project students will consider the role and function of engineering in our society, the professional duties and responsibilities expected of engineers together with the behaviours that accompany their actions.

Among the topics covered in this unit are: roles, responsibilities and behaviours of a professional engineer, planning a project, project management stages, devising solutions, theories and calculations, management using a Gantt chart, evaluation techniques, communication skills, and the creation and presentation of a project report.

On successful completion of this unit students will be able to conceive, plan, develop and execute a successful engineering project, and produce and present a project report outlining and reflecting on the outcomes of each of the project processes and stages. As a result, they will develop skills such as critical thinking, analysis, reasoning, interpretation, decision-making, information literacy, and information and communication technology, and skills in professional and confident self-presentation.

This unit is assessed by a Pearson-set theme. The project brief will be set by the centre, based on a theme provided by Pearson (this will change annually). The theme and chosen project within the theme will enable students to explore and examine a relevant and current topical aspect of professional engineering.

*Please refer to the accompanying Pearson-set Assignment Guide and the Theme Release document for further support and guidance on the delivery of the Pearson-set unit.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Formulate and plan a project that will provide a solution to an identified engineering problem.
- 2. Conduct planned project activities to generate outcomes which provide a solution to the identified engineering problem.
- 3. Produce a project report analysing the outcomes of each of the project processes and stages.
- Present the project report drawing conclusions on the outcomes of the project.

Essential Content

LO1 Formulate and plan a project that will provide a solution to an identified engineering problem

Examples of realistic engineering based problems:

Crucial considerations for the project

How to identify the nature of the problem through vigorous research

Feasibility study to identify constraints and produce an outline specification

Develop an outline project brief and design specification:

Knowledge theories, calculations and other relevant information that can support the development of a potential solution

Ethical frameworks:

The Engineering Council and Royal Academy of Engineering's Statement of Ethical Principles

The National Society for Professional Engineers' Code of Ethics

Regulatory bodies:

Global, European and national influences on engineering and the role of the engineer, in particular: The Royal Academy of Engineering and the UK Engineering Council

The role and responsibilities of the UK Engineering Council and the Professional Engineering Institutions (PEIs)

The content of the UK Standard for Professional Engineering Competence (UKSPEC)

Chartered Engineer, Incorporated Engineer and Engineering Technician

International regulatory regimes and agreements associated with professional engineering:

European Federation of International Engineering Institutions.

European Engineer (Eur Eng)

European Network for Accreditation of Engineering Education

European Society for Engineering Education

Washington Accord

Dublin Accord

Sydney Accord

International Engineers Alliance

Asia Pacific Economic Cooperation (APEC) Engineers Agreement

LO2 Conduct planned project activities to generate outcomes which provide a solution to the identified engineering problem

Project execution phase:

Continually monitoring development against the agreed project plan and adapt the project plan where appropriate

2010.11

Work plan and time management, using Gantt chart or similar.

Tracking costs and timescales

Maintaining a project diary to monitor progress against milestones and timescales

Engineering professional behaviour sources:

Professional responsibility for health and safety (UK-SPEC)

Professional standards of behaviour (UK-SPEC)

Ethical frameworks:

The Engineering Council and Royal Academy of Engineering's Statement of Ethical Principles

The National Society for Professional Engineers' Code of Ethics

LO3 Produce a project report analysing the outcomes of each of the project processes and stages

Convincing arguments:

All findings/outcomes should be convincing and presented logically where the assumption is that the audience has little or no knowledge of the project process

Critical analysis and evaluation techniques:

Most appropriate evaluation techniques to achieve a potential solution

Secondary and primary data should be critiqued and considered with an objective mindset

Objectivity results in more robust evaluations where an analysis justifies a judgement

LO4 Present the project report drawing conclusions on the outcomes of the project

Presentation considerations:

Media selection, what to include in the presentation and what outcomes to expect from it. Audience expectations and contributions

Presentation specifics. Who to invite: project supervisors, fellow students and employers. Time allocation, structure of presentation

Reflection on project outcomes and audience reactions

Conclusion to report, recommendations for future work, lessons learned, changes to own work patterns

Reflection for learning and practice:

The difference between reflecting on performance and evaluating a project – the former considers the research process, information gathering and data collection, the latter the quality of the research argument and use of evidence

The cycle of reflection:

To include reflection in action and reflection on action

How to use reflection to inform future behaviour, particularly directed towards sustainable performance

The importance of Continuing Professional Development (CPD) in refining ongoing professional practice

Reflective writing:

e and the re-Avoiding generalisation and focusing on personal development and the research

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Formulate and plan a project that will provide a solution to an identified engineering problem		D1 Illustrate the effect of legislation and ethics in
P1 Select an appropriate engineering based project, giving reasons for the selection	M1 Undertake a feasibility study to justify project selection	developing the project plan
P2 Create a project plan for the engineering project		ed
LO2 Conduct planned proutcomes which provide engineering problem	roject activities to generate a solution to the identified	D2 Critically evaluate the success of the project plan making recommendations
P3 Conduct project activities, recording progress against original project plan	M2 Explore alternative methods to monitor and meet project milestones, justify selection of chosen method(s)	for improvements
LO3 Produce a project re outcomes of each of the stages	eport analysing the project processes and	LO3 & LO4 D3 Critically analyse the project outcomes making
P4 Produce a project report covering each stage of the project and analysing project outcomes	M3 Use appropriate critical analysis and evaluation techniques to analyse project findings	recommendations for further development
LO4 Present the project on the outcomes of the p	report drawing conclusions project	
P5 Present the project report using appropriate media to an audience	M4 Analyse own behaviours and performance during the project and suggest areas for improvement	

Recommended Resources

Textbooks

PUGH, P. S. (1990) Total Design: Integrated Methods for Successful Product Engineering. Prentice Hall.

n Downloaded home of the second secon

Unit 8:	Mechanical	Principles
Unit code	F/615/1482	
Unit level	4	
Credit value	15	

Introduction

Mechanical principles have been crucial for engineers to convert the energy produced by burning oil and gas into systems to propel, steer and stop our automobiles, aircraft and ships, amongst thousands of other applications. The knowledge and application of these mechanical principles is still the essential underpinning science of all machines in use today or being developed into the latest technology.

The aim of this unit is to introduce students to the essential mechanical principles associated with engineering applications.

Topics included in this unit are: behavioural characteristics of static, dynamic and oscillating engineering systems including shear forces, bending moments, torsion, linear and angular acceleration, conservation of energy and vibrating systems; and the movement and transfer of energy by considering parameters of mechanical power transmission systems.

On successful completion of this unit students will be able to explain the underlying principles, requirements and limitations of mechanical systems

Learning Outcomes

By the end of this unit students will be able to:

- 1. Identify solutions to problems within static mechanical systems.
- 2. Illustrate the effects that constraints have on the performance of a dynamic mechanical system.
- 3. Investigate elements of simple mechanical power transmission systems.
- 4. Analyse natural and damped vibrations within translational and rotational massspring systems.

Essential Content

LO1 Identify solutions to problems within static mechanical systems

Shafts and beams:

The effect of shear forces on beams Bending moments and stress due to bending in beams Selection of appropriate beams and columns to satisfy given specifications The theory of torsion in solid and hollow circular shafts

LO2 Illustrate the effects that constraints have on the performance of a dynamic mechanical system

Energy and work:

The principle of conservation of energy and work-energy transfer in systems Linear and angular velocity and acceleration Velocity and acceleration diagrams of planar mechanisms Gyroscopic motion

LO3 Investigate elements of simple mechanical power transmission systems

Simple systems:

Parameters of simple and compounded geared systems Efficiency of lead screws and screw jacks

Couplings and energy storage:

Universal couplings and conditions for constant-velocity

Importance of energy storage elements and their applications

LO4 Analyse natural and damped vibrations within translational and rotational mass-spring systems

Types of motion:

Simple harmonic motion

Natural frequency of vibration in mass-spring systems

setuin pownloaded.com.comerstone.etuin pownloaded.com.comerstone.etuin

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Identify solutions to problems within static mechanical systems		D1 Calculate the magnitude of shear
P1 Calculate the distribution of shear force, bending moment and stress due to bending in simply supported beams	M1 Determine the material of a circular bar from experimental data of angle of twist obtained from a torsion test	force and bending moment in cantilever and encastré beams for a variety of applications
P2 Justify the selection of standard rolled steel sections for beams and columns		e.edi
P3 Determine the distribution of shear stress and the angular deflection due to torsion in solid and hollow circular shafts		rston
LO2 Illustrate the effects that constraints have on the performance of a dynamic mechanical system		D2 Calculate solutions of velocities and
P4 Explain the effects of energy transfer in mechanical systems with uniform acceleration present	M2 Construct diagrams of the vector solutions of velocities and accelerations within planar mechanisms	accelerations within planar mechanisms using trigonometric methodology
P5 Identify the magnitude and effect of gyroscopic reaction torque		
ownloade		

Pass	Merit	Distinction
LO3 Investigate elements of simple mechanical power transmission systems		D3 Examine the cause of a documented case
P6 Determine the velocity ratio for compound gear systems and the holding torque required to securely mount a gearbox	M3 Examine devices which function to store mechanical energy in their operation	of mechanical power transmission failure and the steps taken to correct the problem and rectify any design faults
P7 Calculate the operating efficiency of lead screws and screw jacks		2
P8 Explain the conditions required for a constant velocity ratio between two joined shafts		ne.eu
LO4 Analyse natural and damped vibrations within translational and rotational mass-spring systems		D4 Identify the conditions needed for
P9 Explain the natural frequency of vibration in a mass-spring system	M4 Determine the amplitude and phase angle of the transient response within a mass- spring damper system	mechanical resonance and measures that are taken to prevent this from occurring
whiled	front	
00		

Recommended Resources

Textbooks

BIRD, J. and ROSS, C. (2014) Mechanical Engineering Principles. 3rd Ed. London: Routledge.

Downloaded.hom.comerstone.edu.in

Unit 13:Fundamentals of
Thermodynamics and Heat
EnginesUnit codeD/615/1487Unit level4Credit value15

Introduction

Thermodynamics is one of the most common applications of science in our lives, and it is so much a part of our daily life that it is often taken for granted. For example, when driving your car you know that the fuel you put into the tank is converted into energy to propel the vehicle, and the heat produced by burning gas when cooking will produce steam which can lift the lid of the pan. These are examples of thermodynamics, which is the study of the dynamics and behaviour of energy and its manifestations.

This unit introduces students to the principles and concepts of thermodynamics and its application in modern engineering.

On successful completion of this unit students will be able to investigate fundamental thermodynamic systems and their properties, apply the steady flow energy equation to plant equipment, examine the principles of heat transfer to industrial applications, and determine the performance of internal combustion engines.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Investigate fundamental thermodynamic systems and their properties.
- 2. Apply the Steady Flow Energy Equation to plant equipment.
- 3. Examine the principles of heat transfer to industrial applications.
- 4. Determine the performance of internal combustion engines.

Essential Content

LO1 Investigate fundamental thermodynamic systems and their properties

Fundamental systems:

Forms of energy and basic definitions

Definitions of systems (open and closed) and surroundings

First law of thermodynamics

The gas laws: Charles' Law, Boyle's Law, general gas law and the Characteristic Gas Equation

The importance and applications of pressure/volume diagrams and the concept of work done

Polytrophic processes: constant pressure, constant volume, adiabatic and isothermal systems

LO2 Apply the Steady Flow Energy Equation to plant equipment

Energy equations:

Conventions used when describing the behaviour of heat and work

The Non-Flow Energy Equation as it applies to closed systems

Assumptions, applications and examples of practical systems

Steady Flow Energy Equation as applied to open systems

Assumptions made about the conditions around, energy transfer and the calculations for specific plant equipment e.g. boilers, super-heaters, turbines, pumps and condensers
LO3 Examine the principles of heat transfer to industrial applications

Principles of heat transfer:

Modes of heat transmission, including conduction, convection & radiation Heat transfer through composite walls and use of U and k values Application of formulae to different types of heat exchangers, including recuperator and evaporative

Regenerators

Heat losses in thick and thin walled pipes, optimum lagging thickness

LO4 Determine the performance of internal combustion engines

Performance:

Application of the second law of thermodynamics to heat engines

Comparison of theoretical and practical heat engine cycles, including Otto, Diesel and Carnot

Explanations of practical applications of heat engine cycles, such as compression ignition (CI) and spark ignition engines, including their relative mechanical and thermodynamic efficiencies

Describe possible efficiency improvements to heat engines

Pass	Merit	Distinction
LO1 Investigate fundamental thermodynamic systems and their properties		D1 Illustrate the importance of
P1 Describe the operation of thermodynamic systems and their properties	M1 Calculate the index of compression in polytrophic processes	expressions for work done in thermodynamic processes by applying first principles
P2 Explain the application of the first law of thermodynamics to appropriate systems		edi
P3 Explain the relationships between system constants for a perfect gas		ctone.
LO2 Apply the Steady Flow Energy Equation to plant equipment		D2 Produce specific Steady Flow Energy
P4 Explain system parameters using the Non- Flow Energy Equation	M2 Derive the Steady Flow Energy Equation from first principles	Equations based on stated assumptions in plant equipment
P5 Apply the Steady Flow Energy Equation to plant equipment	non	
ownloade		

© Copyrighted. For viewing purposes only

Pass	Merit	Distinction
LO3 Examine the principles of heat transfer to industrial applications		D3 Distinguish the differences between
P6 Determine the heat transfer through composite walls	M3 Explore heat losses through lagged and unlagged pipes	parallel and counter flow recuperator heat exchangers
P7 Apply heat transfer formulae to heat exchangers		•
LO4 Determine the perform engines	ance of internal combustion	D4 Evaluate the performance of two
P8 Describe with the aid of a PV (pressure volume) diagram the operational sequence of four stroke spark ignition and four stroke compression ignition engines.	M4 Review the relative efficiency of ideal heat engines operating on the Otto and Diesel cycles	stroke and four stroke diesel engines
P9 Explain the mechanical efficiency of two and four stroke engines	orn	
26	deron	
- WILLOW		

Recommended Resources

Textbooks

DUNN, D. (2001) Fundamental Engineering Thermodynamics. Longman.

EASTOP, T.D. and MCCONKEY, A. (1996) Applied Thermodynamics for Engineering Technologists. 5th Ed. Prentice Hall.

EASTOP, T.D. and MCCONKEY, A. (1997) Applied Thermodynamics for Engineering Technologists Student Solution Manual. 5th Ed. Prentice Hall.

RAYNER, J. (2008) Basic Engineering Thermodynamics. 5th Ed. Pearson.

bownhoaded ROGERS, G.F.C. and MAYHEW, Y.R. (1994) Thermodynamic and Transport Properties of

Unit 34:Research ProjectUnit codeJ/615/1502Unit typeCoreUnit level5Credit value30

Introduction

Completing a piece of research is an opportunity for students to showcase their intellect and talents. It integrates knowledge with different skills and abilities that may not have been assessed previously, which may include seeking out and reviewing original research papers, designing their own experimental work, solving problems as they arise, managing time, finding new ways of analysing and presenting data, and writing an extensive report. Research can always be a challenge but one that can be immensely fulfilling, an experience that goes beyond a mark or a grade, but extends into long-lasting areas of personal and professional development.

This unit introduces students to the skills necessary to deliver a complex, independently conducted research project that fits within an engineering context.

On successful completion of this unit students will be able to deliver a complex and independent research project in line with the original objectives, explain the critical thinking skills associated with solving engineering problems, consider multiple perspectives in reaching a balanced and justifiable conclusion, and communicate effectively a research project's outcome. Therefore, students develop skills such as critical thinking, analysis, reasoning, interpretation, decision-making, information literacy, information and communication technology literacy, innovation, conflict resolution, creativity, collaboration, adaptability and written and oral communication.

Learning Outcomes

By the end of this unit students will be able to:

- Conduct the preliminary stages involved in the creation of an engineering 1. research project.
- 2. Examine the analytical techniques used to work on all stages of the project and strategies required to overcome the challenges involved in a research project.
- 3. Reflect on the impact the research experience could have in enhancing personal or group performance within an engineering context.
- and pre-4. Explore the communication approach used for the preparation and presentation

© Copyrighted. For viewing purposes only

Essential Content

LO1 Conduct the preliminary stages involved in the creation of an engineering research project

Setting up the research preliminaries: Project proposal Developing a research question(s) Selection of project approach Identification of project supervisor Estimation of resource requirements, including possible sources of funding Identification of project key objectives, goals and rationale Development of project specification

LO2 Examine the analytical techniques used to work on all stages of the project and strategies required to overcome the challenges involved in a research project

Investigative skills and project strategies: Selecting the method(s) of collecting data Data analysis and interpreting findings Literature review Engaging with technical literature Technical depth Multi-perspectives analysis Independent thinking Statement of resources required for project completion Potential risk issues, including health and safety, environmental and commercial

Project management and key milestones

LO3 Reflect on the impact the research experience could have in enhancing personal or group performance within an engineering context

Research purpose: Detailed statement of project aims Relevance of the research Benefits and beneficiaries of the research

LO4 Explore the communication approach used for the preparation and oneedi presentation of the research project's outcomes

Reporting the research:

Project written presentation

Preparation of a final project report

Writing research report

Project oral presentation such as using short presentation to discuss the work whiled thomas and conclusions

Pass	Merit	Distinction
LO1 Conduct the preliminary stages involved in the creation of an engineering research project		D1 Produce a comprehensive project
P1 Produce a research project proposal that clearly defines a research question or hypothesis	M1 Analyse the project specification and identify any project risks	proposal that evaluates and justifies the rationale for the research
P2 Discuss the key project objectives, the resulting goals and rationale		21
LO2 Examine the analytical techniques used to work on all stages of the project and strategies required to overcome the challenges involved in a research project		D2 Critically analyse literature sources utilised, data analysis
P3 Conduct a literature review of published material, either in hard copy or electronically, that is relevant to your research project	M2 Analyse the strategies used to overcome the challenges involved in the literature review stage M3 Discuss merits, limitations and pitfalls of	conducted and strategies to deal with challenges
P4 Examine appropriate research methods and approaches to primary and secondary research	approaches to data collection and analysis	
ownloade		

Pass	Merit	Distinction
LO3 Reflect on the impact the research experience could have in enhancing personal or group performance within an engineering context		D3 Critically evaluate how the research experience enhances
P5 Reflect on the effectiveness and the impact the experience has had upon enhancing personal or group performance	M4 Evaluate the benefits from the findings of the research conducted	personal or group performance within an engineering context
LO4 Explore the communica preparation and presentation outcomes	itions approach used for the n of the research project's	D4 Critically reflect how the audience for whom the research was
P6 Explore the different types of communications approaches that can be used to present the research outcomes	M5 Evaluate how the communication approach meets research project outcomes and objectives	conducted influenced the communication approach used for the preparation and presentation of the research project's
P7 Communicate research outcomes in an appropriate manner for the intended audience	corn	outcomes
MALOZOE	derom	

<text><text>

OBERLENDER, G.D. (2014) Project Management for Engineering and Construction. 3rd Ed.

Unit 35: Professional Engineering Management

Core	
5	
15	201.1.
	Core 5 15

Introduction

Engineers are professionals who can design, develop, manufacture, construct, operate and maintain the physical infrastructure and content of the world we live in. They do this by using their academic knowledge and practical experience, in a safe, effective and sustainable manner, even when faced with a high degree of technical complexity.

The aim of this unit is to continue building up on the knowledge gained in *Unit 4: Managing a Professional Engineering Project,* to provide students with the professional standards for engineers and to guide them on how to develop the range of employability skills needed by professional engineers.

Among the topics included in this unit are: engineering strategy and services delivery planning, the role of sustainability, Total Quality Management (TQM), engineering management tools, managing people and becoming a professional engineer.

On successful completion of this unit students will be able to construct a coherent engineering services delivery plan to meet the requirements of a sector-specific organisation or business. They will display personal commitment to professional standards and obligations to society, the engineering profession and the environment.

This unit is assessed by a Pearson-set theme. The project brief will be set by the centre, based on a theme provided by Pearson (this will change annually). The theme and chosen project within the theme will enable students to explore and examine a relevant and current topical aspect of professional engineering.

*Please refer to the accompanying Pearson-set The Guide and the Theme Release document for further support and guidance on the delivery of the Pearson-set unit.

Learning Outcomes

By the end of this unit students will be able to:

- Evaluate the risk evaluation theories and practices associated with the 1. management of projects for the production of current and developing technology.
- 2. Produce an engineering services delivery plan that meets the requirements of a sector-specific organisation.
- 3. Develop effective leadership, individual and group communication skills.
- . sti . obigato . obigato

Essential Content

LO1 Evaluate the risk evaluation theories and practices associated with the management of projects for the production of current and developing technology

The engineering business environment: Organisational structures and functional elements Strategic planning and deployment Engineering strategy and services delivery planning The role of sustainability Total Quality Management (TQM) Logistics and supply chain management New product development strategies

Legal obligations and corporate responsibility

Engineering relationships:

The relationship between engineering and financial management, marketing, purchasing, quality assurance and public relations

tone.eduin

LO2 Produce an engineering services delivery plan that meets the requirements of a sector-specific organisation

Engineering management tools:

Problem analysis and decision-making, risk management, change management, performance management, product and process improvement, project management and earned value analysis

LO3 Develop effective leadership, individual and group communication skills

Managing people:

Describe the most effective leadership styles

Techniques to effectively manage teams

Steps to follow for delivering effective presentations.

Meeting management skills

Communication and listening skills

Negotiating skills

Human error evaluation

Coaching and mentoring

ne.edu.ir LO4 Develop personal commitment to professional standards and obligations to society, the engineering profession and the environment

Becoming a professional engineer:

Engineering social responsibility

Importance of being active and up to date with the engineering profession, new developments and discoveries

Methods of Continuing Professional Development (CPD) .ig

Pass	Merit	Distinction
LO1 Evaluate the risk evaluation theories and practices associated with the management of projects for the production of current and developing technology		D1 Specify and analyse the challenges encountered when
P1 Evaluate the risk evaluation theories and practices associated with the management of engineering projects	M1 Critically evaluate the main elements and issues that impact the successful management of engineering activities	meeting the requirements for successfully managing engineering activities, and make justified recommendations to
P2 Assess elements and issues that impact the successful management of engineering activities		overcome these challenges
LO2 Produce an engineering services delivery plan that meets the requirements of a sector-specific organisation		D2 Critically evaluate contingencies that might
P3 Develop an engineering services delivery plan, applying the appropriate sector-specific requirements	M2 Evaluate how each step of the delivery plan developed meets the requirements of a sector specific organisation	prevent the delivery plan meeting the requirements of a sector- specific organisation
P4 Determine the engineering management tools needed for designing an engineering services delivery plan	from	
Downloage		

Pass	Merit	Distinction
LO3 Develop effective leadership, individual and group communication skills		D3 Critically evaluate effective ways for the
 P5 Describe the steps for effective persuasion and negotiation P6 Explain the steps for managing effective group meetings P7 Outline the steps to deliver an effective presentation 	M3 Evaluate leadership styles and effective communication skills using specific examples in an organisational context	coaching and mentoring of disillusioned colleagues or of a poorly performing team
LO4 Develop personal commitment to professional standards and obligations to society, the engineering profession and the environment		D4 Evaluate and provide justifications on why it is necessary to be active
 P8 Discuss the context of social responsibility for scientists and engineers P9 Explore the ways in which an engineer can engage in continuing professional development 	M4 Summarise the engineering profession ethical standards and patterns of behaviour	and up to date with the engineering profession's new developments and discoveries
Downhoade	oftott.	

Recommended Resources

Textbooks

BURNS, B. (2014) Managing Change. 6th Ed. Pearson.

DEARDEN, H. (2013) Professional Engineering Practice: Reflections on the Role of the Professional Engineer. CreateSpace Independent Publishing Platform.

KARTEN, N. (2010) Presentation Skills for Technical Professionals. IT Governance Ltd.

LOCK, D. (2013) Project Management. 10th Ed. Routledge.

Websites

http://www.engc.org.uk/

Engineering Council UK-SPEC UK Standard for Professional Engineering Competence (E-Books)

http://www.ewb-uk.org/

Engineering without Borders (General Reference) pownloaded from co

Unit 36:Advanced Mechanical
PrinciplesUnit codeR/615/1504Unit level5

15

Introduction

Credit value

A mechanical engineer is required to have an advanced knowledge of most of the machinery used within the engineering industry, and should understand the physical laws that influence their operation.

The aim of this unit is to continue covering the topics discussed in *Unit 9: Mechanical Principles*. It will provide students with advanced knowledge of the mechanical theories associated with engineering applications.

Topics included in this unit are: Poisson's Ratio and typical values of common materials; the relationship between the elastic constants such as Bulk Modulus, Modulus of Elasticity, Modulus of Rigidity; the relationship between bending moment, slope and deflection in beams; calculating the slope and deflection for loaded beams using Macaulay's method; analysing the stresses in thin-walled pressure vessels; and stresses in thick-walled cylinders, flat and v-section belt drive theory.

On successful completion of this unit students will be able to have more advanced knowledge of mechanical principles to determine the behavioural characteristics of materials subjected to complex loading; assess the strength of loaded beams and pressurised vessels; determine specifications of power transmission system elements; and examine operational constraints of dynamic rotating systems.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Determine the behavioural characteristics of materials subjected to complex loading.
- 2. Assess the strength of loaded beams and pressurised vessels.
- 3. Analyse the specifications of power transmission system elements.
- 4. Examine operational constraints of dynamic rotating systems.

Essential Content

LO1 Determine the behavioural characteristics of materials subjected to complex loading

Characteristics of materials:

Definition of Poisson's Ratio and typical values of metals, plastics and composite materials

The relationship between the elastic constants such as Bulk Modulus, Modulus of Elasticity, Modulus of Rigidity and Poisson's Ratio

Characteristics of two-dimensional and three-dimensional loading

Calculation of volumetric strain and volume changes

LO2 Assess the strength of loaded beams and pressurised vessels

Strength:

The relationship between bending moment, slope and deflection in beams

Calculating the slope and deflection for loaded beams using Macaulay's method

Analysing the stresses in thin-walled pressure vessels and stresses in thickwalled cylinders

LO3 Analyse the specifications of power transmission system elements

Specifications:

Flat and v-section belt drive theory

Operation of friction clutches with uniform pressure and uniform wear theories

Principles of both epicyclic and differential gearing, and the torque required to accelerate these systems

Areas of failure when transmitting power mechanically

LO4 Examine operational constraints of dynamic rotating systems

Operational constraints:

ricit Design of both radial plate and cylindrical cams to meet operating specifications

© Copyrighted. For viewing purposes only

Pass	Merit	Distinction	
LO1 Determine the behavioural characteristics of materials subjected to complex loading		D1 Critique the behavioural	
P1 Discuss the relationship between the elastic constants	M1 Assess the effects of volumetric thermal expansion and	characteristics of materials subjected to complex loading	
P2 Illustrate the effects of two-dimensional and three-dimensional loading on the dimensions of a given material	contraction on isotropic materials	600	
P3 Determine the volumetric strain and change in volume due to three-dimensional loading		ctone.	
LO2 Assess the strength of loaded beams and pressurised vessels		D2 Critique and justify your choice of suitable	
P4 Evaluate the variation of slope and deflection along a simply supported beam	M2 Review a suitable size universal beam from appropriate data	size universal beam using appropriate computer software to	
P5 Determine the principal stresses that occur in a thin walled cylindrical pressure vessel and a pressurised thick-walled cylinder	tables which conforms to given design specifications for slope and deflection	assumptions that could affect the selection	
ownoade			

Pass	Merit	Distinction
LO3 Analyse the specification system elements	ns of power transmission	D3 Evaluate the conditions needed for an
 P6 Discuss the initial tension requirements for the operation of a v-belt drive P7 Analyse the force requirements to engage a friction clutch in a mechanical system 	M3 Critically analyse both the uniform wear and uniform pressure theories of friction clutches for their effectiveness in theoretical calculations	epicyclic gear train to become a differential, and show how a differential works in this application
P8 Analyse the holding torque and power transmitted through epicyclic gear trains		Te.eo
LO4 Examine operational constraints of dynamic rotating systems		D4 Critically evaluate and justify the different
P9 Explore the profiles of both radial plate and cylindrical cams that will achieve a specified motion	M4 Evaluate the effects of misalignment of shafts and the measures that are taken to prevent	choices of cam follower that could be selected to achieve a specified motion, explaining the
P10 Show the mass of a flywheel needed to keep a machine speed within specified limits	problems from occurring	disadvantages and disadvantages of each application
P11 Investigate the balancing masses required to obtain dynamic equilibrium in a rotating system		

Recommended Resources

Textbooks

BIRD, J. and ROSS, C. (2014) *Mechanical Engineering Principles*. 3rd Ed. London: Routledge.

KHURMI, R.S. and GUPTA, J.K. (2005) *Textbook of Machine Design*. New Delhi: S. Chand Publishing.

gree and the second sec

Unit 37:Virtual EngineeringUnitY/615/1505Unit level5Credit value15

Introduction

NUM

The work of an engineer increasingly involves the use of powerful software modelling tools (virtual modelling). These tools allow us to predict potential manufacturing difficulties, suggest how a product or component is likely to behave in service, and undertake rapid and low cost design iteration and optimisation, to reduce costs, preempt failure and enhance performance.

This unit introduces students to the application of relevant Computer Aided Design (CAD) and analysis engineering tools in contemporary engineering. They will learn about standards, regulations and legal compliance within the context of engineering.

Topics included in this unit are: dimensioning and tolerances, standardisation and regulatory compliance (BS, ASTM, ISO, etc.), material properties and selection, manufacturing processes, 2D, 3D, CAD, solid modelling, one-dimensional and multi-dimensional problems, meshing and boundary conditions, and the finite volume method.

On successful completion of this unit students will be able to consider how to perform computational fluid dynamics (CFD) simulations, develop finite element product and system models, explain the identification of faults in the application of simulation techniques and discuss the modelling method and data accuracy.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Explore the capabilities and limitations of computer-based models in meeting design fundamentals and their use in solving problems in engineering.
- 2. Analyse finite element product and system models in order to find and solve potential structural or performance issues.
- 3. Perform CFD simulations to evaluate pressure and velocity distributions within an engineering setting.
- evine ericon connection connectio

Essential Content

LO1 Explore the capabilities and limitations of computer-based models in meeting design fundamentals and their use in solving problems in engineering

Engineering design fundamentals: eduit Dimensioning and tolerances Standardisation and regulatory compliance (BS, ASTM, ISO, etc.)

How to manufacture and what to manufacture:

Material properties and selection

Manufacturing processes: capability, cost issues and selection

Design tools:

2D and 3D CAD

Solid modelling

File types, export and compatibility

Interpretation and presentation of results through a series of guided exercises:

Results obtained, comparison of data, benefits and limitations

Generalisation of provided information, recommendations on current and future applications

LO2 Analyse finite element product and system models in order to find and solve potential structural or performance issues

Finite element formulation: One-dimensional problems Multi-dimensional problems Beams

Finite element method:

Define the problem: simplify an engineering problem into a problem that can be solved using FEA

Define material properties and boundary conditions; choose appropriate functions, formulate equations, solve equations, visualise and explain the results

Je.edu

LO3 Perform CFD simulations to evaluate pressure and velocity distributions within an engineering setting

Fundamentals of CFD (Computational Fluid Dynamics):

CFD and the finite volume method background

Meshing and boundary conditions

Applications, advantages and limitations of CFD

CFD simulation and analysis:

Apply CFD to simple design/aerodynamics problems: define the problem, provide initial boundary conditions for the problem, set-up a physical model, define material properties and operating conditions

Interpretation of CFD results

Examine the solution using graphical and numerical tools; suggest and make revision of the models

LO4 Determine faults in the application of simulation techniques to evaluate the modelling method and data accuracy

Simulation results:

Extracting relevant information from simulation-based exercises

Interpretation and presentation of results through a series of guided exercises

Pass	Merit	Distinction
LO1 Explore the capabilities and limitations of computer- based models in meeting design fundamentals and their use in solving problems in engineering		D1 Critically evaluate and provide supported recommendations for
P1 Discuss the benefits and pitfalls of computer based models used within an industrial environment to solve problems in engineering	 M1 Evaluate the capabilities and limitations of computer-based models M2 Evaluate the processes and applications used in solving problems in engineering 	the application of computer-based models to an industrial environment that would improve efficiency and problem- solving
LO2 Analyse finite element in order to find and solve poperformance issues	product and system models tential structural or	D2 For a range of practical examples, provide supported and
 P2 Analyse the role of finite element analysis in modelling products and systems P3 Review a range of practical examples to solve potential structural or performance-based issues using finite element product and systems models 	M3 Critically analyse the finite element product and systems models that help to find and solve potential performance or structural issues for a range of practical examples	justified recommendations for recognising and solving potential structural or performance-based issues, using finite element product and systems models
Downloage		

Pass	Merit	Distinction
LO3 Perform CFD simulations to evaluate pressure and velocity distributions within an engineering setting		D3 Provide supported and appropriate
P4 Demonstrate the importance of CFD simulations applied to evaluate pressure and velocity distributions in the engineering setting	M4 Evaluate the application and limitations of CFD in an engineering context	recommendations for improving efficiency and the generation of suitable meshes for CFD simulations
P5 Complete CFD simulation to evaluate pressure and velocity distributions within an engineering setting		e.edi
LO4 Determine faults in the application of simulation techniques to evaluate the modelling method and data accuracy		D4 Critically evaluate the appropriate application of
P6 Determine the faults in the application of simulation techniques	M5 Extract relevant information from simulation	simulation techniques that can support decision-making
P7 Discuss and evaluate the modelling method and data accuracy	M6 Trace potential faults in the application of simulation techniques	
	M7 Critically review results through a series of guided exercises and recommendations	
ownloade		

Recommended Resources

Textbooks

DATE, A.W. (2005) Introduction to Computational Fluid Dynamics. Cambridge University Press.

FISH, J. and BELYTSCHKO, T. (2007) A First Course in Finite Elements. Wiley.

TREVOR, H. and BECKER, A.A. (2013) Finite Element Analysis for Engineers. A Primer, National Agency for Finite Element Methods & Standards.

Websites

www.tandfonline.com

Taylor & Francis Online International Journal of Computational (Journal)

http://www.inderscience.com/

Inder Science Publishers Progress in Computational Fluid Dynamics, An International Journal (Journal)

https://www.nafems.org/

NAFEMS International Journal of CFD Case Studies (the second seco (Journal)

Unit 38: Further Thermodynamics

Unit code	D/615/1506
Unit level	5
Credit value	15

Introduction

From the refrigerators that we use in our homes to the colossal power stations that generate the electricity we use and provide power to industry, the significance that thermodynamics plays in the 21st century cannot be underestimated.

The aim of this unit is to build on the techniques explored in *Unit 13: Fundamentals of Thermodynamics and Heat Engines*, to develop further students' skills in applied thermodynamics by investigating the relationships between theory and practice.

Among the topics included in this unit are: heat pumps and refrigeration, performance of air compressors, steam power plant and gas turbines.

On successful completion of this unit students will be able to determine the performance and operation of heat pumps and refrigeration systems, review the applications and efficiency of industrial compressors, use charts and/or tables to determine steam plant parameters and characteristics, describe the operation of gas turbines and assess their efficiency.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Evaluate the performance and operation of heat pumps and refrigeration systems.
- 2. Review the applications and efficiency of industrial compressors.
- 3. Determine steam plant parameters and characteristics using charts and/or tables.
- 4. Examine the operation of gas turbines and assess their efficiency.

Essential Content

LO1 Evaluate the performance and operation of heat pumps and refrigeration systems

edu.11

Heat pumps and refrigeration:

Reversed heat engines: reversed Carnot and Rankine cycles

Second law of thermodynamics

Refrigeration tables and charts (p-h diagrams)

Coefficient of performance of heat pumps and refrigerators

Refrigerant fluids: properties and environmental effects

Economics of heat pumps

LO2 Review the applications and efficiency of industrial compressors

Performance of air compressors: Theoretical and realistic cycles Isothermal and adiabatic work Volumetric efficiency Intercoolers, dryers and air receivers Hazards and faults: safety consideration and associated legislation

LO3 Determine steam plant parameters and characteristics, using charts and/or tables

Steam power plant:

Use of tables and charts to analyse steam cycles

Circuit diagrams showing boiler, super heater, turbine, condenser and feed pump

Theoretical and actual operation: Carnot and Rankine cycle

Efficiencies and improvements

LO4 Examine the operation of gas turbines and assess their efficiency

Gas turbines: Single and double shaft gas turbine operation Property diagrams: Brayton (Joule) cycle Downloaded from comersione eduin Intercooling, reheat and regeneration

LO1 Evaluate the performan pumps and refrigeration syste P1 Using didactic sketches.	ce and operation of heat	
P1 Using didactic sketches.	LO1 Evaluate the performance and operation of heat pumps and refrigeration systems	
evaluate the operating principles of both heat pumps and refrigeration systems P2 Use refrigeration tables and pressure/enthalpy charts to determine COP, heating effect and refrigeration effect of reversed heat engines	 M1 Assess the limiting factors that impact on the economics of heat pumps M2 Illustrate the contradiction between refrigeration cycles and the second law of thermodynamics 	installation of a ground source heat pump on a smallholding to make valid recommendations for improvements
LO2 Review the applications and efficiency of industrial compressors		D2 Critically evaluate volumetric efficiency
 P3 Assess the different types of industrial compressor and identify justifiable applications for each P4 Discuss compressor faults and potential hazards 	M3 Evaluate isothermal efficiency by calculating the isothermal and polytropic work of a reciprocating compressor	formula for a reciprocating compressor
P5 Determine the volumetric efficiency of a reciprocating compressor	ġ, ŗ	

>

LO3 Determine steam plant characteristics using charts a		Distinction
	LO3 Determine steam plant parameters and characteristics using charts and/or tables	
 P6 Discuss the need for superheated steam in a power generating plant P7 Apply the use of charts and/or tables to establish overall steam plant efficiencies in power systems 	M4 Justify why the Rankine cycle is preferred over the Carnot cycle in steam production plants around the world	modifications made to the basic Rankine cycle to improve the overall efficiency of steam generation power plants
LO4 Examine the operation of gas turbines and assess their efficiency		D4 Critically analyse the practical solutions
P8 Investigate the principles of operation of a gas turbine plantP9 Assess the efficiency of a gas turbine system	M5 Compare and evaluate the actual plant and theoretical efficiencies in a single shaft gas turbine system, accounting for any discrepancies found	manufacturers offer to overcome problematic areas in gas turbines, such as burner ignition continuation and self- starting capabilities
102de	derom	
Recommended Resources

Textbooks

EASTOP, T.D. and MCCONKEY, A. (1996) Applied Thermodynamics for Engineering Technologists. 5th Ed. Prentice Hall.

Downloaded from connersione EASTOP, T.D. and MCCONKEY, A. (1996) Applied Thermodynamics for Engineering

Unit 39:	Further	Mathematics
Unit code	H/615/1507	
Unit level	5	
Credit value	15	

Introduction

The understanding of more advanced mathematics is important within an engineering curriculum to support and broaden abilities within the applied subjects at the core of all engineering programmes. Students are introduced to additional topics that will be relevant to them as they progress to the next level of their studies, advancing their knowledge of the underpinning mathematics gained in *Unit 2: Engineering Maths*.

The unit will prepare students to analyse and model engineering situations using mathematical techniques. Among the topics included in this unit are: number theory, complex numbers, matrix theory, linear equations, numerical integration, numerical differentiation, and graphical representations of curves for estimation within an engineering context. Finally, students will expand their knowledge of calculus to discover how to model and solve engineering problems using first and second order differential equations.

On successful completion of this unit students will be able to use applications of number theory in practical engineering situations, solve systems of linear equations relevant to engineering applications using matrix methods, approximate solutions of contextualised examples with graphical and numerical methods, and review models of engineering systems using ordinary differential equations.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Use applications of number theory in practical engineering situations.
- 2. Solve systems of linear equations relevant to engineering applications using matrix methods.
- 3. Approximate solutions of contextualised examples with graphical and numerical methods.

a elevention connection bownhoatet

Essential Content

LO1 Use applications of number theory in practical engineering situations

Number theory:

Bases of a number (Denary, Binary, Octal, Duodecimal, Hexadecimal) and converting between bases

Types of numbers (Natural, Integer, Rational, Real, Complex)

The modulus, argument and conjugate of complex numbers

Polar and exponential forms of complex numbers

The use of de Moivre's Theorem in engineering

Complex number applications e.g. electric circuit analysis, information and energy control systems

LO2 Solve systems of linear equations relevant to engineering applications using matrix methods

Matrix methods:

ownic

Introduction to matrices and matrix notation

The process for addition, subtraction and multiplication of matrices

Introducing the determinant of a matrix and calculating the determinant for a 2x2 and 3x3 matrix

Using the inverse of a square matrix to solve linear equations

Gaussian elimination to solve systems of linear equations (up t 3x3)

LO3 Approximate solutions of contextualised examples with graphical and numerical methods

Graphical and numerical methods:

Standard curves of common functions, including quadratic, cubic, logarithm and exponential curves

Systematic curve sketching knowing the equation of the curve

Using sketches to approximate solutions of equations

Numerical analysis using the bisection method and the Newton–Raphson method

Numerical integration using the mid-ordinate rule, the trapezium rule and Simpson's rule

LO4 Review models of engineering systems using ordinary differential equations

Differential equations:

Formation and solutions of first-order differential equations

Applications of first-order differential equations e.g. RC and RL electric circuits, Newton's laws of cooling, charge and discharge of electrical capacitors and complex stresses and strains

Formation and solutions of second-order differential equations

Applications of second-order differential equations e.g. mass-spring-damper systems, information and energy control systems, heat transfer, automatic control systems and beam theory and RLC circuits

Introduction to Laplace transforms for solving linear ordinary differential equations

Applications involving Laplace transforms such as electric circuit theory, load frequency control, harmonic vibrations of beams, and engine governors

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Use applications of num engineering situations	ber theory in practical	D1 Test the correctness of a trigonometric
P1 Apply addition and multiplication methods to numbers that are expressed in different base systems	M1 Solve problems using de Moivre's Theorem	identity using de Moivre's Theorem
P2 Solve engineering problems using complex number theory		601
P3 Perform arithmetic operations using the polar and exponential form of complex numbers		ctone.
LO2 Solve systems of linear engineering applications usir	equations relevant to ng matrix methods	D2 Validate solutions for the given
P4 Calculate the determinant of a set of given linear equations using a 3x3 matrix	M2 Determine the solution to a set of given engineering linear equations using the Inverse	engineering linear equations using appropriate computer software
P5 Solve a system of three linear equations using Gaussian elimination	Matrix Method for a 3x3 matrix	
ownloade		

	Merit	Distinction
LO3 Approximate solutions with graphical and numerica	of contextualised examples I methods	D3 Critically evaluate the use of numerical
P6 Estimate solutions of sketched functions using a graphical estimation method	M3 Solve engineering problems and formulate mathematical models using graphical and numerical	estimation methods, commenting on their applicability and the accuracy of the methods
P7 Calculate the roots of an equation using two different iterative techniques	Integration	Ň
P8 Determine the numerical integral of engineering functions using two different methods		xone.ec
LO4 Review models of engir ordinary differential equation	neering systems using	D4 Critically evaluate first and second-order
P9 Formulate and solve first order differential equations related to engineering systems	M4 Demonstrate how different models of engineering systems using first-order differential equations can be used to solve engineering problems	differential equations when generating the solutions to engineering situations
P10 Formulate and solve second order homogeneous and non- homogeneous differential equations related to engineering systems		engineering systems
P11 Calculate solutions to linear ordinary differential equations using Laplace		

Recommended Resources

Textbooks

BIRD, J. (2014) *Higher Engineering Mathematics*. 7th Ed. London: Routledge.

SINGH, K. (2011) Engineering Mathematics Trough Applications. Basingstoke, Palgrave Macmillan.

oneedu STROUD, K.A. and BOOTH, D.J. (2013) Engineering Mathematics. 7th Ed: Basingstoke, Palgrave Macmillan.

Journals

Communications on Pure and Applied Mathematics. Wiley. Journal of Engineering Mathematics. Springer. Journal of Mathematical Physics. American Institute of Physics.

Websites

http://www.mathcentre.ac.uk/

http://www.mathtutor.ac.uk/

Maths Centre (Tutorials) Maths Tutor (Tutorials) pownloadedtro

Electives Boundaded Horn

Unit 19:Electrical and Electronic
PrinciplesUnit codeM/615/1493Unit level4Credit value15

Introduction

Electrical engineering is mainly concerned with the movement of energy and power in electrical form, and its generation and consumption. Electronics is mainly concerned with the manipulation of information, which may be acquired, stored, processed or transmitted in electrical form. Both depend on the same set of physical principles, though their applications differ widely. A study of electrical or electronic engineering depends very much on these underlying principles; these form the foundation for any qualification in the field, and are the basis of this unit.

The physical principles themselves build initially from our understanding of the atom, the concept of electrical charge, electric fields, and the behaviour of the electron in different types of material. This understanding is readily applied to electric circuits of different types, and the basic circuit laws and electrical components emerge. Another set of principles is built around semiconductor devices, which become the basis of modern electronics. An introduction to semiconductor theory leads to a survey of the key electronic components, primarily different types of diodes and transistors.

Electronics is very broadly divided into analogue and digital applications. The final section of the unit introduces the fundamentals of these, using simple applications. Thus, under analogue electronics, the amplifier and its characteristics are introduced. Under digital electronics, voltages are applied as logic values, and simple circuits made from logic gates are considered.

On successful completion of this unit students will have a good and wide-ranging grasp of the underlying principles of electrical and electronic circuits and devices, and will be able to proceed with confidence to further study.

Learning Outcomes

By the end of this unit students will be able to:

- Apply an understanding of fundamental electrical quantities to evaluate circuits 1. with constant voltages and currents.
- 2. Evaluate circuits with sinusoidal voltages and currents.
- 3. Describe the basis of semiconductor action, and its application to simple electronic devices.
- , describing Explain the difference between digital and analogue electronics, describing simple

© Copyrighted. For viewing purposes only

Essential Content

LO1 Apply an understanding of fundamental electrical quantities to analyse circuits with constant voltages and currents

Fundamental electrical quantities and concepts:

Charge, current, electric field, energy in an electrical context, potential, potential difference, resistance, electromotive force, conductors and insulators

Circuit laws:

Voltage sources, Ohm's law, resistors in series and parallel, the potential divider

Kirchhoff's and Thevenin's laws; superposition

Energy and power:

Transfer into the circuit through, for example, battery, solar panel or generator, and out of the circuit as heat or mechanical. Maximum power transfer

LO2 Analyse circuits with sinusoidal voltages and currents

Fundamental quantities of periodic waveforms:

Frequency, period, peak value, phase angle, waveforms, the importance of sinusoids

Mathematical techniques:

Trigonometric representation of a sinusoid. Rotating phasors and the phasor diagram. Complex notation applied to represent magnitude and phase

Reactive components:

Principles of the inductor and capacitor. Basic equations, emphasising understanding of rates of change (of voltage with capacitor, current with inductor). Current and voltage phase relationships with steady sinusoidal quantities, representation on phasor diagram

Circuits with sinusoidal sources:

Current and voltage in series and parallel RL, RC and RLC circuits. Frequency response and resonance

Mains voltage single-phase systems. Power, root-mean-square power quantities, power factor

Ideal transformer and rectification:

The ideal transformer, half-wave and full-wave rectification. Use of smoothing capacitor, ripple voltage

LO3 Describe the basis of semiconductor action, and its application to simple electronic devices

Semiconductor material:

Characteristics of semiconductors; impact of doping, p-type and n-type semiconductor materials, the p-n junction in forward and reverse bias

Simple semiconductor devices:

Characteristics and simple operation of junction diode, Zener diode, light emitting diode, bipolar transistor, Junction Field Effect Transistor (FET) and Metal Oxide Semiconductor FET (MOSFET). The bipolar transistor as switch and amplifier

Simple semiconductor applications:

Diodes: AC-DC rectification, light emitting diode, voltage regulation

Transistors: switches and signal amplifiers

LO4 Explain the difference between digital and analogue electronics, describing simple applications of each

Analogue concepts:

Analogue quantities, examples of electrical representation of, for example, audio, temperature, speed, or acceleration

The voltage amplifier; gain, frequency response, input and output resistance, effect of source and load resistance (with source and amplifier output modelled as Thevenin equivalent)

Digital concepts:

Logic circuits implemented with switches or relays

Use of voltages to represent logic 0 and 1, binary counting

Logic Gates (AND, OR, NAND, NOR) to create simple combinational logic functions

Truth Tables

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Apply an understanding quantities to analyse circuits currents	of fundamental electrical with constant voltages and	D1 Evaluate the operation of a range of circuits with
P1 Apply the principles of circuit theory to simple circuits with constant sources, to explain the operation of that circuit	M1 Apply the principles of circuit theory to a range of circuits with constant sources, to explain the operation of that circuit	constant sources, using relevant circuit theories.
LO2 Analyse circuits with sin currents	usoidal voltages and	D2 Analyse the operation and
P2 Analyse series RLC circuits, using the principles of circuit theory with sinusoidal sources.	M2 Analyse series and parallel RLC circuits, using the principles of circuit theory with sinusoidal sources.	behaviour of series and parallel RLC circuits, including resonance and using the principles of circuit theory with sinusoidal sources.
LO3 Describe the basis of se application to simple electron	miconductor action, and its ic devices	D3 Analyse the performance of a
 P3 Describe the behaviour of a p-n junction in terms of semiconductor behaviour P4 Demonstrate the action of a range of semiconductor devices 	M3 Explain the operation of a range of discrete semiconductor devices in terms of simple semiconductor theory	range of discrete semiconductor devices in terms of simple semiconductor theory, and suggest applications for each.
001/10/020		

electronics, describing simple	etween digital and analogue applications of each	D4 Evaluate the use of analogue and digital
P5 Explain the difference between digital and analogue electronics	M4 Explain the benefits of using analogue and digital electronic devices using	devices and circuits using examples.
P6 Explain amplifier characteristics	examples	
P7 Explain the operation of a simple circuit made of logic gates		8
		rstone.
	orn	
	an	
A		
200	O	
villoade		
Downloade		
Downloade		
Downloade		

Recommended Resources

Textbooks

BIRD, J. (2013) *Electrical Circuit Theory and Technology*. Routledge.

HUGHES, E., HILEY, J., BROWN, K. and MCKENZIE-SMITH, I. (2012) Electrical and Electronic Technology. Pearson.

SINGH, K. (2011) Engineering Mathematics through Applications. Palgrave.

SINGH, K. (2011) Engineering Mathematics through Applications. Palgrave. Pearson BTEC Higher Nationals Study Guide (2011) Custom Publishing. Pearson.

Unit 22:	Electronic Circuits and Devices
Unit code	F/615/1496
Unit level	4
Credit value	15

Introduction

Electronics is all around us today: in our homes, the workplace, cars and even on or in our bodies. It's hard to believe that it was only in 1947 that the transistor was developed by American physicists John Bardeen, Walter Brattain, and William Shockley. The invention of the transistor paved the way for cheaper radios, calculators and computers.

This unit introduces students to the use of electronics manufacturers' data to analyse the performance of circuits and devices, the operational characteristics of amplifier circuits, the types and effects of feedback on a circuit performance, and the operation and application of oscillators. They will also be introduced to the application of testing procedures to electronic devices and circuits, and use the findings of the tests to evaluate their operation.

Among the topics included in this unit are: power amplifiers, class A, B and AB; operational amplifiers, inverting, non-inverting, differential, summing, integrator, differentiator; types such as open, closed, positive and negative feedback; frequency, stability, frequency drift, distortion, amplitude, wave shapes and testing procedures.

On successful completion of this unit students will be able to determine the operational characteristics of amplifier circuits, investigate the types and effects of feedback on an amplifier's performance, examine the operation and application of oscillators and apply testing procedures to electronic devices and circuits.

Learning Outcomes

By the end of this unit students will be able to:

- 1. Determine the operational characteristics of amplifier circuits.
- Downloaded from connersion edutin 2. Investigate the types and effects of feedback on an amplifier's performance.
 - 3. Examine the operation and application of oscillators.

© Copyrighted. For viewing purposes only

Essential Content

LO1 Determine the operational characteristics of amplifier circuits

Operational characteristics:

Power amplifiers: class A, B and AB

Operational amplifiers: inverting, non-inverting, differential, summing, integrator, differentiator, comparator, instrumentation, Schmitt trigger, active filters

Gain, bandwidth, frequency response, input and output impedance

Distortion and noise

LO2 Investigate the types and effects of feedback on an amplifier's performance

Types and effects:

Types including open, closed, positive and negative feedback

Effect of feedback on gain, bandwidth, distortion, noise, stability, input and output impedance

LO3 Examine the operation and application of oscillators

Operation and application:

ownos

Types of oscillators such as Wien bridge, Twin-T, R-C ladder, L-C coupled, transistor, operational amplifier, crystal

Frequency, stability, frequency drift, distortion, amplitude and wave shapes

LO4 Apply testing procedures to electronic devices and circuits

Testing procedures:

Measuring performance, using practical results and computer simulations Voltage gain, current, bandwidth, frequency response, output power, input and output impedance nerstone.edu.in

Distortion and noise

Devices to test:

Semiconductors

Integrated circuits

Amplifiers

Oscillators

Filters

Power supplies

Integrated circuit (IC) voltage regulators

Combined analogue and digital IC's

Component manufacturer's data:

Specifications, manuals and circuit diagrams

Use of testing equipment:

Meters, probes and oscilloscopes

Signal generators and signal analysers, logic analysers

Virtual test equipment

own

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction	
LO1 Determine the operation amplifier circuits	nal characteristics of	D1 Assess the results obtained from the	
 P1 Describe the types of amplifiers available and their applications P2 Examine the different performance characteristics of types of amplifier 	M1 Explain the results obtained from applying practical tests on an amplifier's performance	application of practical and virtual tests on amplifier circuits studied	
LO2 Investigate the types an amplifier's performance	nd effects of feedback on an	D2 Evaluate the results of practical and virtual	
P3 Examine the types of feedback available and their effect on the amplifier's performance	M2 Perform practical tests to show the effect of feedback on an amplifier's performance	tests to analyse the effect of feedback on an amplifier's performance	
P4 Describe a circuit which employs negative feedback		0	
LO3 Examine the operation	and application of oscillators	D3 Analyse the results	
P5 Examine types of available oscillators and their applications	M3 Assess the performance characteristics of types of oscillators	obtained from applying practical and virtual tests on oscillators studied	

Down

M4 Perform tests on electronic devices and circuits, recording results and recommending appropriate action	obtained from applying practical and virtual tests on devices and circuits studied
	6
	erstor
corti	
deroth	
/	

Recommended Resources

Textbooks

BOYLESTAD, R.L. and NASHELSKY, L. (2013) *Electronic Devices and Circuit Theory*. 11th Ed. Pearson.

FLOYD, T.L. and BUCHLA, D. (2013) Electronics Fundamentals: Circuits, Devices & eedu.ir Applications. 8th Ed. Pearson.

HOROWITZ, P. and HILL, W. (2015) The Art of Electronics. 3rd Ed. Cambridge University Press.

Websites

www.electronics-tutorials.ws

www.learnabout-electronics.org

www.learnabout-electronics.org

www.electronics-tutorials.ws

http://learn.mikroe.com/

ownload

Electronic Tutorials Amplifiers (Tutorials)

Learn About Electronics Amplifiers (Tutorials)

Learn About Electronics Oscillators (Tutorials)

Electronic Tutorials Oscillators (Tutorials)

Mikro Elektronika Introduction to checking componants (E-Book)

Unit 48:Manufacturing Systems
EngineeringUnit codeJ/615/1516Unit level5Credit value15

Introduction

Manufacturing systems engineering is concerned with the design and on-going operation and enhancement of the integrated elements within a manufacturing system, which is a very complex activity, even for simple products. The art of manufacturing systems engineering is essentially designing systems that can cope with that complexity effectively.

The aim of this unit is to develop students' understanding of that complexity within a modern manufacturing environment. Among the topics covered in this unit are: elements that make up a manufacturing system, including production engineering, plant and maintenance engineering, product design, logistics, production planning and control, forecast quality assurance, accounting and purchasing, all of which work together within the manufacturing system to create products that meet customers' requirements.

On successful completion of this unit students will be able to explain the principles of a manufacturing system and consider how to design improvements. They will be introduced to all the elements that make up a modern manufacturing system, and they will learn how to optimise the operation of existing systems through discerning use of monitoring data. Some of the elements will be developed in greater depth; of particular importance will be looking at the systems of production planning and control, which are the day-to-day tools used to manage the manufacturing system effectively.

Learning Outcomes

By the end of this unit students will be able to:

- Illustrate the principles of manufacturing systems engineering and explain their 1. relevance to the design and enhancement of manufacturing systems.
- 2. Use a range of analysis tools, including value stream mapping, to determine the effectiveness and efficiency of a manufacturing system, and then develop an appropriate future state for that system.
- 3. Outline the impact of different production planning approaches on the effectiveness of a manufacturing system.
- 4. Define the responsibilities of manufacturing systems engineering and review how

Essential Content

LO1 Illustrate the principles of manufacturing systems engineering and their relevance to the design and enhancement of manufacturing systems

Manufacturing systems elements:

Elements to be considered include quality, cost, delivery performance and optimising output

Problem-solving and managing complexity, maintenance scheduling and planning, resource planning and productivity

Effect of testing and data analysis on performance

LO2 Use a range of analysis tools, including value stream mapping, to determine the effectiveness and efficiency of a manufacturing system, and then develop an appropriate future state for that system

Analysis tools:

CNI

Introduction to value stream mapping, and the value of both current state mapping and future state mapping

Bottle-neck analysis, by using process improvement tools and techniques e.g. value stream analysis, simulation, kanban

Using key performance indicators to understand the performance of a manufacturing system e.g. overall equipment effectiveness, lead-time, cycle time, waiting time, yield, delivery performance, safety metrics

Reviewing key performance indicators; methods for presenting metrics and performance e.g. balanced scorecards, performance dashboards, Andon boards, Gemba walks

LO3 Outline the impact of different production planning approaches on the effectiveness of a manufacturing system

Production planning approaches:

Examples of production planning strategy: push vs pull factors, kanban systems, make to stock, make to order and engineer to order

Production planning approaches such as batch and queue, pull/kanban, just-intime, modular design, configuration at the final point, and master scheduling

Production planning management tools:

Enterprise Resource Mapping (ERP) systems, Material Resource Planning (MRP 2) and Manufacturing Execution systems, ability to managing complexity and resourcing through information technology

Industrial engineering issues: the importance of standard times and the impact on productivity and the costing of products. Standard work underpins the repeatability of process and quality control

LO4 Review the functions of manufacturing systems engineering and how they enable successful organisations to remain competitive

Effectiveness of manufacturing systems:

Plant layout design, planning and control, productivity and continuous improvement, quality control and equipment effectiveness

Return on investment and capital expenditure, control of the cost of planned maintenance

Manufacturing information technology: the supply of data from the process to decision-makers e.g. failure modes for both product and system, maintenance and down time data, standard times for production, material control, energy usage

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Illustrate the principles of engineering and their relevant enhancement of manufacturi	of manufacturing systems nce to the design and ng systems	D1 Apply value stream mapping to a production process to evaluate the
 P1 Illustrate the principles of manufacturing engineering P2 Explain the relevance of manufacturing systems engineering to the design of a manufacturing system 	M1 Evaluate the impact that manufacturing systems have on the success of a manufacturing organisation	by using the current state map to suggest improvements D2 Review value stream
LO2 Use a range of analysis stream mapping, to determine fficiency of a manufacturing develop an appropriate future	tools, including value ne the effectiveness and g system, and then e state for that system	D2 Review value stream mapping against other production planning methodologies and
P3 Apply value stream mapping to visualise a production process	M2 Identify optimisation opportunities through value stream mapping of a production process	justify its use as a production planning tool
ownloade	from	

Pass	Merit	Distinction
LO3 Outline the impact of different production planning approaches on the effectiveness of a manufacturing system		D3 Justify the most appropriate production planning technique and
 P4 Identify the common production planning approaches and state their impact on manufacturing systems P5 Define the types of manufacturing approach, such as make to stock, make to order and engineer to order 	 M3 Evaluate the effectiveness of production planning methods M4 Explore the effectiveness of common production planning techniques to identify which production approach they complement 	its suitability for a particular manufacturing approach, such as make to stock, make to order, or engineer to order
LO4 Review the functions of manufacturing systems engineering and how they enable successful organisations to remain competitive		D4 Critically consider the elements of an existing manufacturing system to
 P6 Define the core responsibilities of a manufacturing systems engineer P7 Identify the key contributing success factors of a manufacturing system 	M5 Evaluate the impact that a manufacturing systems engineering has on successful manufacturing organisations	appraise why this is successful
ownloade		

Recommended Resources

Textbooks

BICHENO, J. and HOLWEG, M. (2009) The Lean Toolbox. 4th Ed. PICSIE Books.

CHOPRA, S. and MEINDL, P. (2015) Supply Chain Management: Strategy, Planning, and Operation (Global Edition). 6th Ed. Pearson.

SLACK, N. (2013) Operations Management. 7th Ed. Pearson.

sone edit WOMACK, J., JONES, D. and ROOS, D. (1990) The Machine That Changed the World. Free Press.

Websites

http://www.industryweek.com/

Industry Week .MES connersi Five Benefits of an MES

Unit 52:Further Electrical, Electronic
and Digital PrinciplesUnit codeL/615/1520Unit level5

Introduction

Credit value

Almost every aspect of our lives relies on electrical powered, electronically controlled machines and devices, many of them digital in format. To properly understand how to make the most efficient use of these devices in a safe and economical way, it is vital to have a thorough knowledge of the underlying principles on which they rely.

This unit builds on the preliminary techniques and skills introduced in *Unit 19: Electrical, Electronic and Unit 20: Digital Principles.*

15

The emphasis in this unit will be in developing a structured approach to the analysis of AC single-phase and three-phase powered circuitry. This will help students to arrive at the solution in the most efficient way, with the greatest probability of it being correct. In addition, students will be introduced to the expanding use of computers, using specialised software to solve electrical, electronic and digital circuits. This will allow students to develop the necessary confidence and competence in the four key areas of mathematical techniques, circuit analysis, circuit simulation and laboratory practice.

Successful completion of this unit will enable students to cope with increasingly complex problems and prepare them for the challenge of Level 6 academic programmes.

Learning Outcomes

By the end of this unit students will be able to:

- Use appropriate mathematical techniques to solve a range of electrical and 1. electronic problems.
- 2. Apply appropriate circuit theorems to solve problems in electrical networks.
- 3. Use appropriate laboratory and computer simulation techniques to investigate both analogue and digital circuits and interpret the results.
- navior

© Copyrighted. For viewing purposes only

Essential Content

LO1 Use appropriate mathematical techniques to solve a range of electrical and electronic problems

Formal steady state circuit analysis:

Determinants, mesh analysis and nodal analysis (and their comparison)

Analysis using ideal sources, superposition theorem

AC circuit analysis:

Complex notation, polar and Cartesian coordinates, RLC circuits

Advanced use of phasor diagrams

Power: instantaneous power, power factor, apparent power, the power triangle

LO2 Apply appropriate circuit theorems to solve problems in electrical networks

Three-phase theory:

Application of trigonometric methods to solution of phasor diagrams

Application of complex numbers to represent quantities in AC circuits

Single-phase representation

Solution of balanced three-phase circuits

Complex notation applied to three-phase, unbalanced loads, unconnected neutral point

Power, reactive power and power factor correction for three-phase systems

LO3 Use appropriate laboratory and computer simulation techniques to investigate both analogue and digital circuits and interpret the results

ECAD:

Use of computer modelling and simulation techniques to analyse and solve electronic, electrical and digital circuits, such as filters and amplifiers using operational amplifiers and discrete devices; digital logic circuit elements; and simple combination and sequential circuits

LO4 Explain the characteristics of non-linear circuits to predict their behaviour under a variety of conditions

Non-linear circuits:

Characteristics of linear and non-linear circuits, mathematical modelling of a number of semiconductor devices, including diodes, bipolar and Field Effect Transistors and how this can be used to predict their 'real' behaviour in practice

Mathematically modelling the behaviour of semiconductor diodes, bipolar transistors and Field Effect Transistors

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction	
LO1 Use appropriate mathe a range of electrical and electrical a	matical techniques to solve tronic problems	D1 Apply an accurate approach to problem	
P1 Produce basic solutions to electrical and electronic problems to a satisfactory standard, but with some misunderstandings	M1 Provide reasoned solutions to problems, showing a logical approach and using a range of mathematical methods	solving with clear justification of methods used with a high standard of explanation for each method	
LO2 Apply appropriate circu problems in electrical networ	it theorems to solve ks	D2 Evaluate electrical theory by using a	
P2 Use electrical network theory to provide solutions to problems to a satisfactory standard, with some level of ambiguity and errors	M2 Apply electrical network theory and provide accurate solutions to problems, showing a logical approach	variety of mathematical and other methods to produce accurate solutions with clear justification of the methods used	
LO3 Use appropriate laboration simulation techniques to invidigital circuits and interpret t	tory and computer estigate both analogue and he results	D3 Present a clear evaluation of the operation of current	
P3 Use appropriate laboratory and computer simulation techniques to explain the performance of digital logic circuits and analogue circuits	M3 Explore analogue and digital logic circuits to show a structured approach to the solutions of problems using a variety of methods	analogue and digital logic circuits by comparing their predicted behaviour with the simulated, theoretical and practical results	
1020	¢		

Pass	Merit	Distinction	
LO4 Explain the characterist predict their behaviour unde	ics of non-linear circuits to r a variety of conditions	D4 Evaluate the application of theory,	
P4 Describe the characteristics of non- linear circuits and how their behaviour differs in practice with 'ideal' devices	M4 Investigate a variety of non-linear circuits by calculating the effects of non-linear behaviour in a number of differing circuits	simulation and practical investigation of a number of circuits using nonlinear circuits	.~
	circuits	X	
		stor.	
		et	
	cor		
200			
100.			
- ownloo			
Downjoc			
Downloc			
Downloc			
Recommended Resources

Textbooks

BIRD, J. (2013) *Electrical Circuit Theory and Technology*. Routledge. HUGHES, E. et al. (2012) *Electrical and Electronic Technology*. Pearson. REHG, J.A. and SARTORI, G.J. (2005) Industrial Electronics. Prentice-Hall. ,711.10 WILAMOWSKI, B.M. and IRWIN, J.D. (2011) The Industrial Electronic Handbook: Fundamentals of Industrial Electronics. CRC Press.

Websites

http://www.bath.ac.uk/	University of Bath Patents (General Reference)
http://www.bsigroup.com	British Standards Institution Standards (General Reference)
https://www.ieee.org	Institute of Electrical and Electronics Engineers Standards (General Reference)
https://app.knovel.com/	Knovel (Research)
https://www.esdu.com	Engineering Science Data Unit (General Reference)
http://www.theiet.org/	Institute of Engineering and Technology (General Reference)
http://www.theiet.org/	Institute of Engineering and Technology (Journal)
http://www.newelectronics.co.uk/	New Electronics Digital Magazine (Journal)

http://www.electronicsworld.co.uk/

http://tie.ieee-ies.org/

http://www.epemag.com/

Electronics World Magazine (Journal) Industrial Economics Society Downloaded.mon.comerstone.edutin (Journal) **Everyday Practical Electronics**

Unit 6: Anatomy and Human Physiology

Unit code	J/617/5363
Unit level	4
Credit value	15

The aim of this unit is to develop knowledge of the anatomy and biological systems of the human body and how they function. Analysis of the interrelationships between these systems and knowledge of the parameters of normal biological functioning are essential to any person involved in the field of biological sciences.

The unit looks at the structure and functioning of the biological systems of the humanbody, highlighting the role they play in the maintenance of human life. Students will study the systems with themes running through them: the muscular, nervous and skeletal systems and how they interact to create monitor and control movement; the lymphatic and cardiovascular systems and their involvement with the transportation of essential nutrients and waste; respiratory, digestive and urinary systems and evaluation of the efficacy of how these interact to provide raw materials for metabolism, absorb nutrients and rid the body of waste; male and female reproduction and management of reproduction.

On completion of the unit, the student will hold sufficient knowledge of human biological systems to understand the management of human health and normal biological function. They will be able to apply this knowledge to a range of scenarioswithin the field of biological science.

ownood

Learning Outcomes

By the end of this unit, a student will be able to:

- Describe how the muscular and skeletal systems interact with one another toprovide 1 support and create movement
- 2 Explain the control systems of the human body
- bownhoaded Describe the structure, function and interrelationship between the systems that obtain 3

© Copyrighted. For viewing purposes only.

Content

LO1 Describe how the muscular and skeletal systems interact with one anotherto provide support and create movement

edui

Movement:

Structure and function of skeletal, smooth and cardiac muscleProcess of muscle contraction; sliding filament theory Role of skeletal muscles in creating movement Structure and function of tendons and ligamentsCommon injuries resulting from movement.

Support:

Structure and functions of the human skeletal systemComposition of bone tissue, bone metabolism Types of bone, structure and functionsBone growth Types of joint: synarthrosis (fibrous), amphiarthrosis (cartilaginous), diarthrosis(synovial) Anatomy of the joint Range of movement of joints.

LO2 Explain the control systems of the human body

Nervous system:

Structure and functions of neurons and neuroglia: dendrites, axon, cell body, Schwann cells, astrocytes, microglia, oligodendrocytes, synapses, myelin sheath

Mechanism of nerve conduction, sodium-potassium pump Neuronal control of muscle activity: skeletal, smooth and cardiac.

Endocrine System:

Structure of the endocrine system: glands, hormonesTypes of hormones: hydrophilic, lipophilic Mechanism of action of hormones: second messenger system (cAMP).

Homeostasis:

Components of a feedback mechanism Negative and positive feedback systems.

LO3 Describe the structure, function and interrelationship between the systemsthat obtain raw materials for metabolism, absorb and transport nutrients and rid the body of wastes

Blood:

Composition and functions of blood

Blood cells: erythrocytes, leukocytes (neutrophils, eosinophils, basophils, lymphocytes, monocytes, macrophages)

Origin of blood cells

Role of platelets and blood clotting process

Impact of environment on blood composition; altitude.

Cardiovascular system:

Structure and function of the heart

Structure and function of blood vessels: arteries, veins, capillariesCardiac cycle Circulation in the human body (pulmonary, systemic and coronary) Physiology of circulation: thermoregulation, exercise, fight/flight response.

Respiratory system:

Structure and function of the human respiratory systemVentilation and the process of gaseous exchange Transport of respiratory gases Respiratory diseases and disorders.

Digestive system:

Structure and function of the human digestive system Accessory organs and structures: liver, pancreas, teeth Process of digestion at each stage: mechanical and chemicalNeural and hormonal control of digestion Diseases and disorders of the digestive tract.

Urinary system:

Structure and function of the kidneyUrine production Osmoregulation and regulation, of pH and sodium.

LO4 Explain the process and management of human reproduction

Reproductive system:

Structure and function of the human male and female reproductive systemsSpermatogenesis, oogenesis.

Stages of reproduction:

Sexual maturity, fertilisation, implantation, embryonic development, parturitionHormonal control of reproduction.

Management of reproduction: Chemical, Physical, Artificial Insemination, Surrogacy, Cloning

Learning Outcomes and Assessment Criteria

Pass	Merit	Distinction
LO1 Describe how the muscular and skeletal systems interact with one another to provide support and createmovement		
 P1 Review the structure of bone and muscle tissues P2 Identify how the muscular and skeletal tissues work together to create support and movement 	M1 Compare the differences in types of muscle and bone, with regards to their specific functions	D1 Analyse the interrelationship between the muscular and skeletal systems in providing support and creating movementin the human body
LO2 Explain the control system	s of the human body	
 P3 Review the nerve cell structures and functions found in the nervous system P4 Outline the structure and function of the endocrine system 	M2 Explore the processes of nerve conduction, and the mechanism of action of hormones	D2 Compare and contrast, using specific examples, the roles of the endocrine and nervous systems in the maintenance of homeostasis within the human body
Downloaded from		

Pass	Merit	Distinction
LO3 Describe the structure, function and interrelationship between the systems that obtain rawmaterials for metabolism, absorb and transport nutrients and rid the body of wastes		
 P5 Describe the structures and functions of the systems used to assimilateand transport nutrients within the human body P6 Describe the structures and functions of the systems used to remove waste from the human body 	M3 Explore the interrelationship betweenthe various systems used to assimilate and transport nutrients and remove waste from the human body	D3 Evaluate the efficiency of these systems working togetherto support and maintain good health in the human body
LO4 Explain the process and management of human reproduction		
 P7 Describe the structures and functions of the male and female human reproductive systems P8 Outline the stages of reproduction in humans and the methods by whichthese can be managed 	M4 Explore the hormonal regulation of the human reproductive processes	D4 Evaluate the various methods of managing reproduction in the humanbody
Downloage		

Recommended Resources

Textbooks

TORTORA, G.J., DERRICKSON, B. (2017) *Principles of Anatomy and Physiology*. 15th ed. Hoboken, NJ: John Wiley & Sons, Inc.

WAUGH, A., GRANT, A. (2018) *Ross and Wilson Anatomy and Physiology in Health andIllness*. 13th ed. Edinburgh: Elsevier.

Web

khanacademy.org	Khan Academy	
	Human anatomy and physiologyShort	
	lessons with animations (Tutorials)	
leeds.ac.uk	University of Leeds	
	Anatomy and physiology	
	(General Information)	
opentextbc.ca	BCcampus Open Education	
	Reproductive systems	
	(General information)	
varta.org.au	The Victorian Assisted Reproductive Treatment Authority	
	Assisted Reproductive Technology	
	(General information)	
a contronte		
Ċ		
2		
$\sqrt{0}$		
N		
-0		
Y		
Download		